
PHYSICS AT A HIGGS FACTORY & LINEAR COLLIDERS

Tao Han University of Pittsburgh

Snowmass Agora on Future Colliders: Linear e⁺e⁻ Colliders December 15, 2021

With the discovery of the Higgs boson:

First time ever, we have a consistent theory:

- · relativistic & quantum mechanical
- renormalizable, unitary, vacuum (quasi) stable potentially valid up to an exponentially high scale, possibly to the Planck scale $M_{\rm Pl}$!

Yet, there are fundamental questions/puzzles to be answered, conceivably with physics not far above the Electro-Weak scale.

Higgs boson mass & the EW scale

The Higgs field gives ALL elementary particles masses, then who gives the Higgs a mass?

$$V(|\Phi|) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$

$$\langle \Phi \rangle \Rightarrow v = (\sqrt{2}G_F)^{-1/2} \approx 246 \text{ GeV}$$

$$m_H^2 = 2\mu^2 = 2\lambda v^2 \approx (125 \text{ GeV})^2 \Rightarrow \mu \approx 89 \text{ GV}, \ \lambda \approx \frac{1}{8}.$$

The SM as an Effective Field Theory valid to a scale 1, the Higgs mass is "naturally" dictated by this scale:

$$c_2 \Lambda^2 \sim m_h^2 : \lambda v^2 \sim \mu^2 \sim (100 \text{ GeV})^2 \sim (10^{-16} M_{\text{Planck}})^2$$

The "Naturalness" consideration implies Λ not too far from v. Otherwise \rightarrow "hierarchy problem" between two scales: Large hierarchy: $v \ll M_{Planck}$; Little hierarchy: $m_H \ll \Lambda_{BSM}(\text{TeV?})$

Higgs coupling & the EW phase transition

In the SM, $m_H = \sqrt{2\lambda}v = 125 \text{ GeV} \rightarrow \lambda_{hhh} \sim 0.13$

This is a genuine self-interaction, a "fifth force"!

But who sets its value?

- ➤ In SUSY @ leading order, the symmetry sets $\lambda = (g_L^2 + g_Y^2)/8 \approx 0.075 \quad \leftarrow \text{inconsistent with observation.}$
- In composite model, the Higgs is a pseudo-Goldstone boson,

 $\rightarrow \lambda$ dynamically generated.

 \triangleright With new physics at Λ :

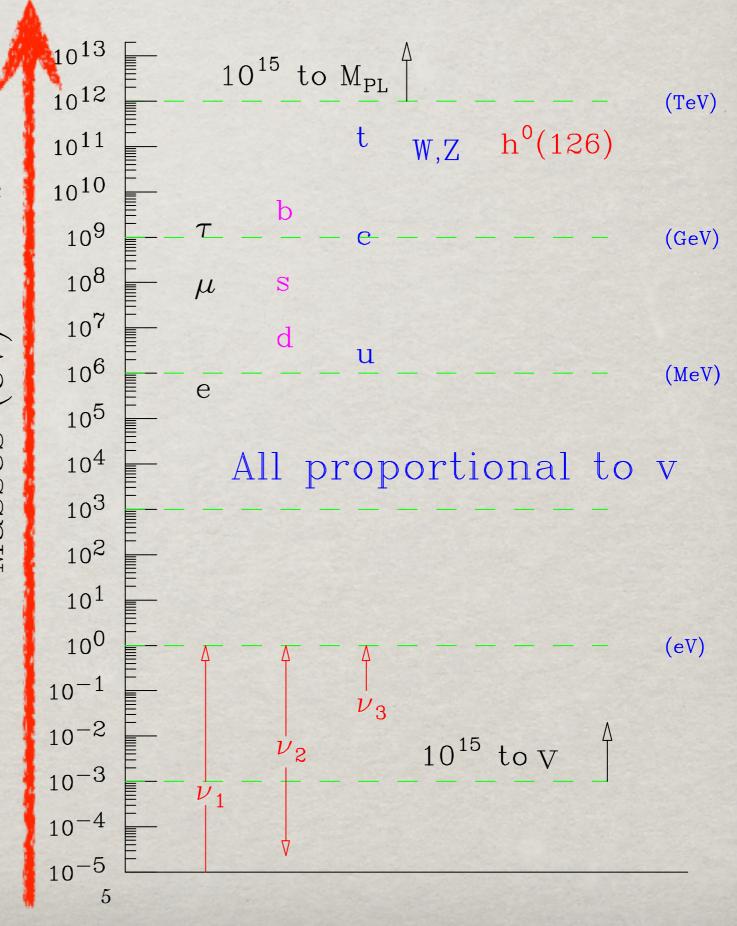
$$V(h) \to m_h^2(h^{\dagger}h) + \frac{1}{2}\lambda(h^{\dagger}h)^2 + \frac{1}{3!\Lambda^2}(h^{\dagger}h)^3, \text{All we know:}$$

$$\to \frac{1}{2}\lambda(h^{\dagger}h)^2 \log\left[\frac{(h^{\dagger}h)}{m^2}\right] \longrightarrow \lambda_{\text{hhh}} \sim 2 \frac{\lambda_{\text{hhh}}}{\lambda_{\text{hhh}}}$$

Important consequences:

- o O(1) modification from λ_{hhh}^{SM} could render the electroweak phase transition strong 1st order!
- O Possible electroweak baryogenesis?
- o Gravitational wave signals? Inflation?

Yukawa couplings: The large & small


The top quark: $y_t \approx 1$ the largest coupling in SM! Any siblings to help stabilize Higgs mass / potential?

$$(\tilde{t}, \tilde{b}), (T', B')...$$

Neutrinos: $y_{\nu} < 10^{-12}$? or a new mechanism, like the "seesaw" with a physics scale:

$$m_{
u} pprox rac{y_{
u}^2 v^2}{M}$$

Higgs is in a pivotal position.

Higgs portal to unknowns?

The Dark Matter?

 $H^{\dagger}H$ is the only bi-linear SM gauge singlet (uncharged). **Bad:** May lead to hierarchy problem w.r.t. high-scale physics; **Good:** May readily serve as a portal to the dark sector: (a dark scalar S or a fermion χ)

$$k_s H^{\dagger} H S^* S, \quad \frac{k_{\chi}}{\Lambda} H^{\dagger} H \bar{\chi} \chi.$$

Important consequences:

- Dark matter direct detection:
 spin-independent signals via the Higgs exchange
- O Can be consistent with the dark matter relic abundance
- O Higgs boson decay to invisible dark matter
- O Modification to the Higgs coupling, thus electroweak phase transition, electroweak baryogenesis? Gravitational wave signals?

• Target accuracies:

Tree-level heavy new physics:

$$\Delta\kappa = \frac{g_{BSM}}{g_{SM}} - 1 \sim \mathcal{O}(\frac{v^2}{\Lambda^2}) \approx \frac{6\%}{(\Lambda/\text{TeV})^2}$$

Quantum-level new physics:

$$\kappa_{loop} \sim \frac{1}{(4\pi)^2} \approx 0.6\%$$

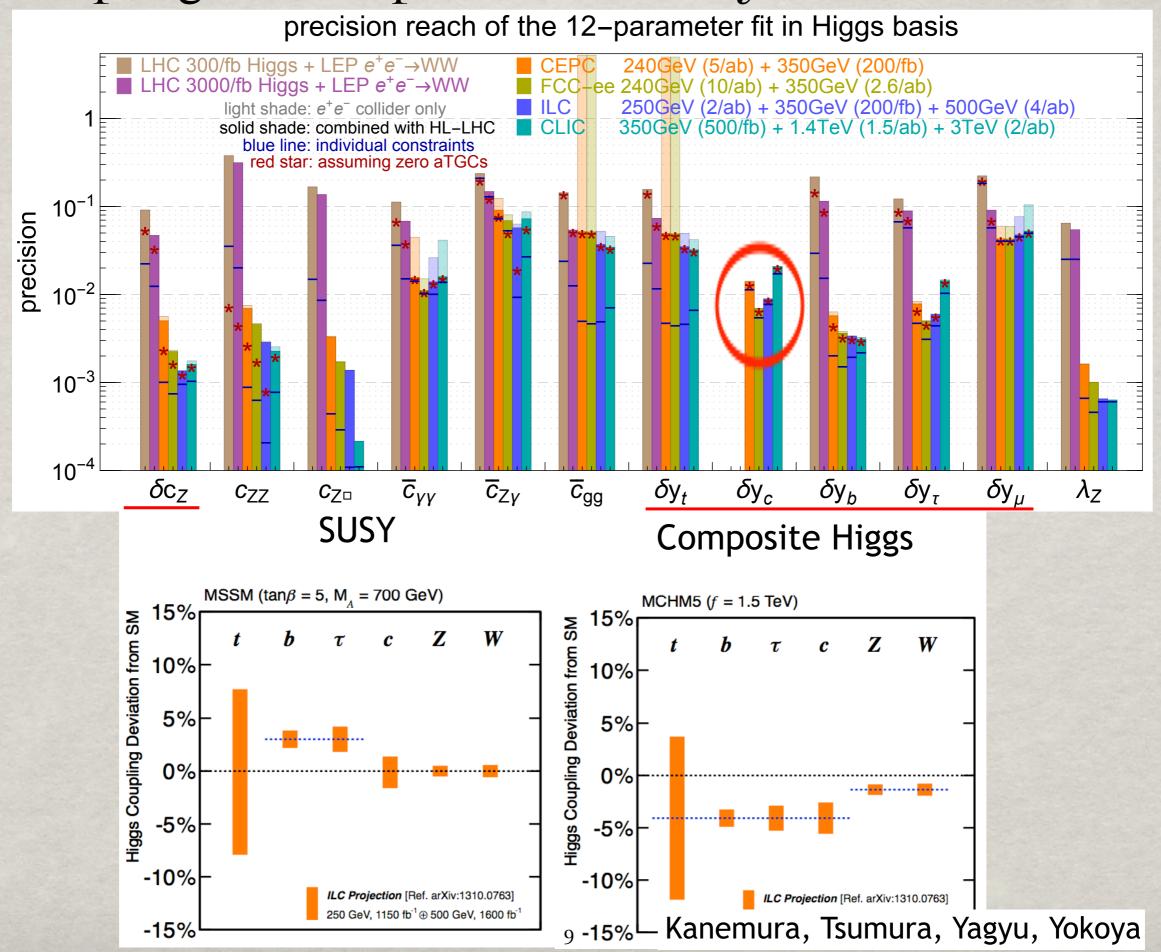
Most wanted coupling, hopefully to reach:

$$\lambda_{hhh} < 10\%$$

All complementary to direct searches!

• A Higgs factory is a must!

ANY elementary particle needs a factory to scrutinize:


- Pion/Kaon (μ, ν) factories: CERN, TRIUMF, FNAL, JLab ...
- tau/charm factories: CESR, BEPC ...
- B-factories: Belle, BaBar, LHCb ...
- Z/W[±] factories: SLC, LEP-I, LEP-II, Tevatron, LHC ...
- Top-quark factories: Tevatron, LHC.

The Higgs boson is NO exception! LHC Run 3 / HL-LHC will lead the way: 50M/ab!

We need O(10⁵ - 10⁶) "clean" Higgs bosons:

- well-constrained kinematics in e⁺e⁻ collisions
- · model-independent, absolute measurements
- sub-percentage accuracy
- challenging decay processes $H \to \tau^{\pm} \mu^{\mp}, c\bar{c}, ...$

Couplings to sub-percent accuracy: Grojean et al. 1704.02333

- Higher energy at a linear collider matters
 - ILC: 500 GeV, 4 ab-1, 80% / 30% polarization.
 - CLIC: 380 GeV, 0.5 ab⁻¹, 80% / 0 polarization. 1.5 TeV, 1.5 ab⁻¹; 3 TeV, 3 ab⁻¹.
 - tt threshold:
 combining threshold scan and top-reconstruction:

$$\Delta m_t < 50 \text{ MeV}, \quad \Delta \alpha_s < 1\%$$

- → Sufficient to decide on the SM vacuum stability!
- > Triple Higgs coupling sensitivity:

→ Precision test of the shape of the Higgs potential, help to reveal the nature of EW phase transition.

• Other potential discoveries at the e⁺e⁻ precision / energy frontier:

- SM Higgs: CP property determination by kinematics
- Energy threshold for new heavy particles:
 Higgs H⁰A⁰, H⁺H⁻; SUSY particles; quarks / leptons reaching M ~ E_{cm}/2.
- Beam polarization important: determining the chiral (left-right) couplings.
- Contact interaction / composite scale ~ 50 TeV

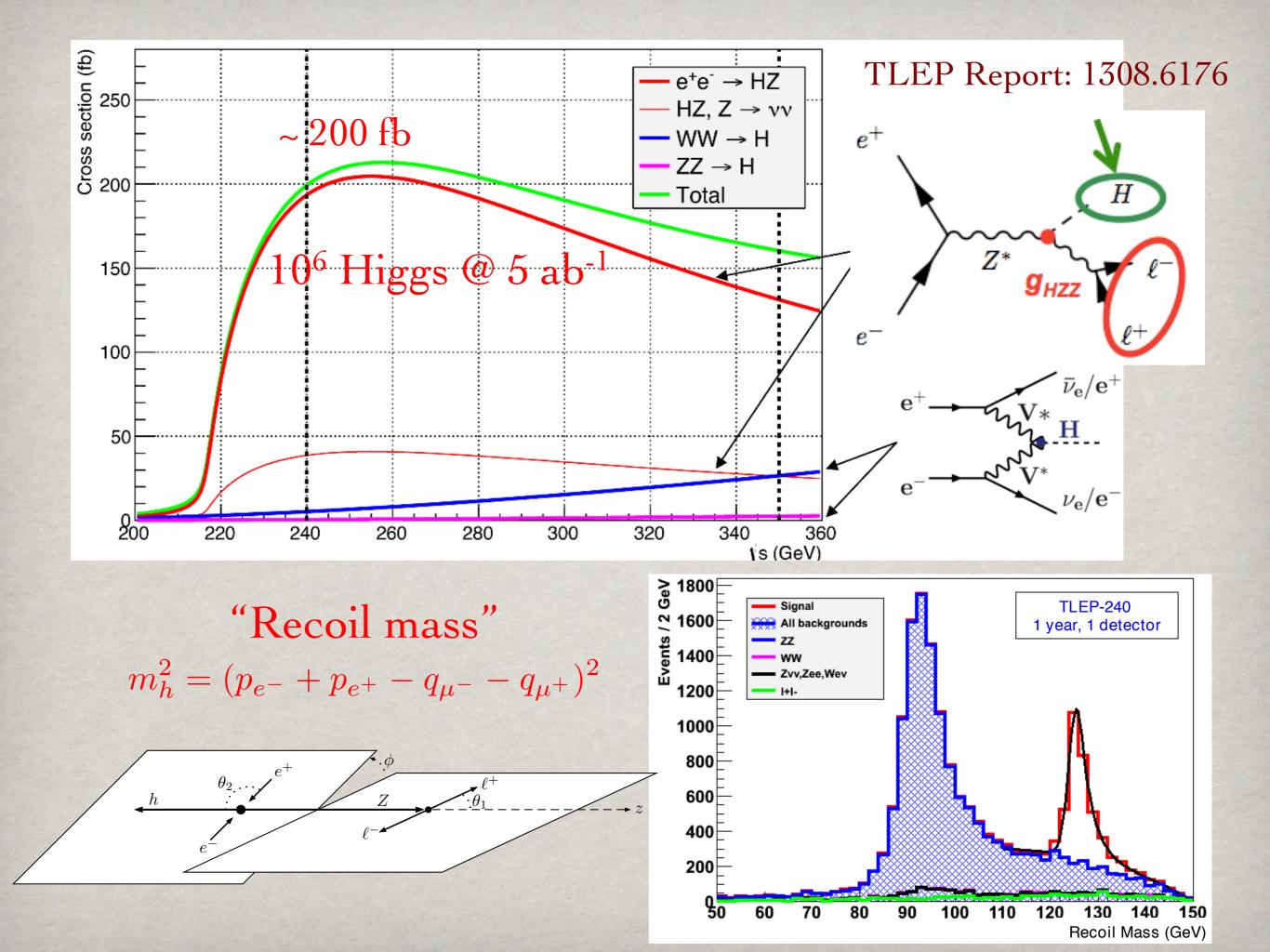
EPJ-C: arXiv:1504.01726;

arXiv:1709.06103; arXiv:1907.04311

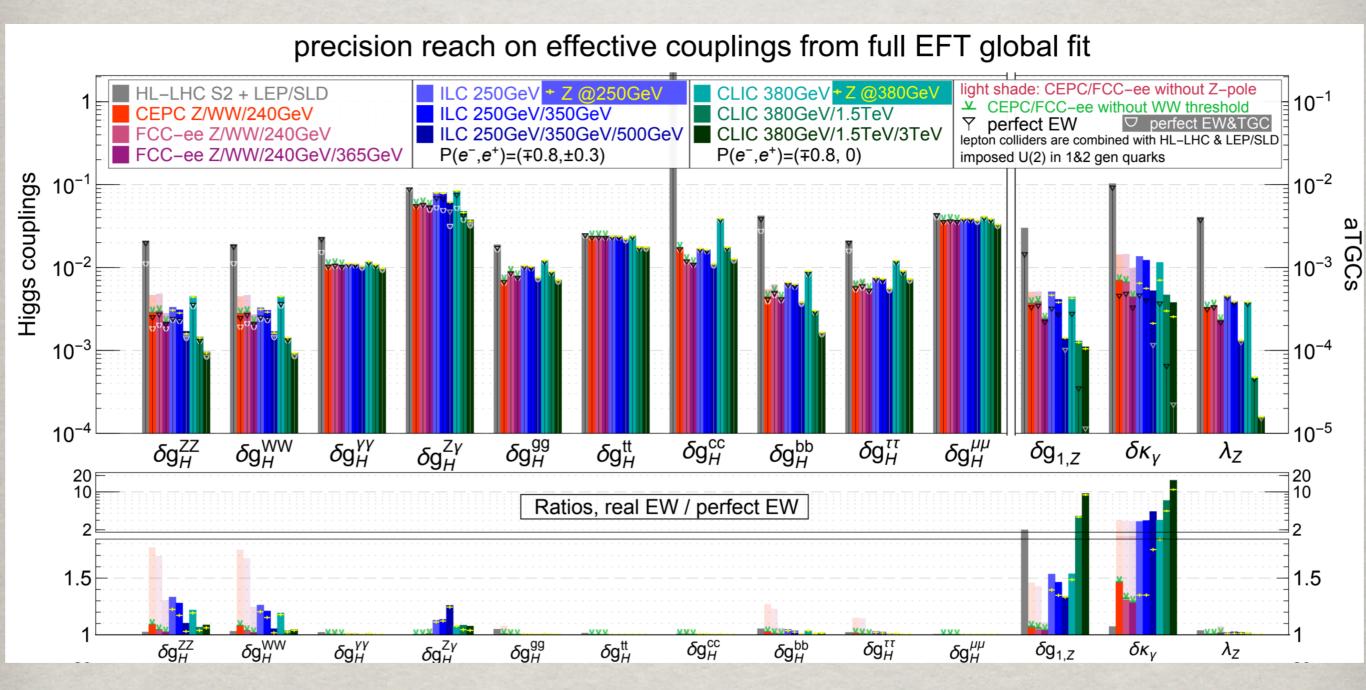
ILC: arXiv:1908.11299

CLIC: arXiv:1812.02093

Summary

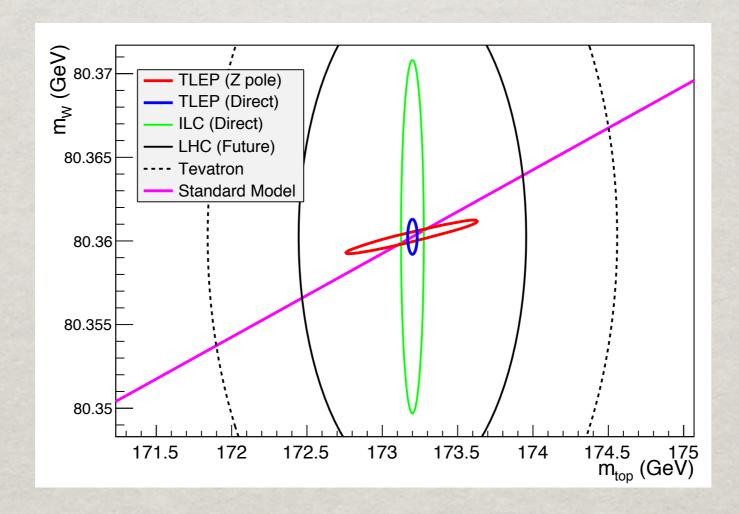

· HEP is in an exciting time:

The SM is complete, and is potentially valid to a very high energy scale. Yet, there are strong indications for the existence of new physics not far above the EW scale.


- The Higgs factory ~250 GeV is the clear target:
 → New physics under the Higgs lamp-post.
- Higher energy linear colliders offer great opportunities for discoveries for BSM physics.

Exciting journey ahead!

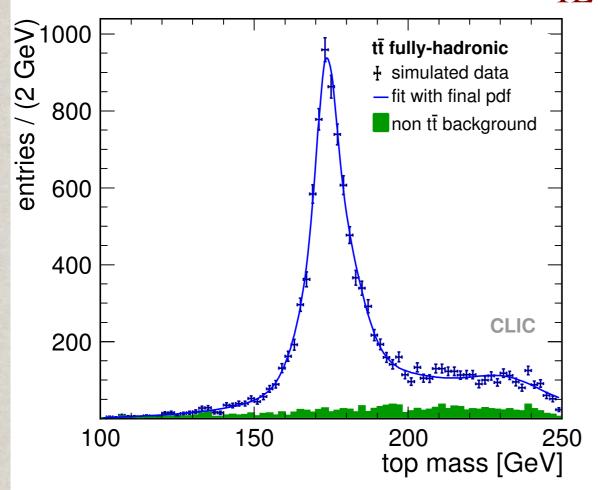
BACKUP SLIDES

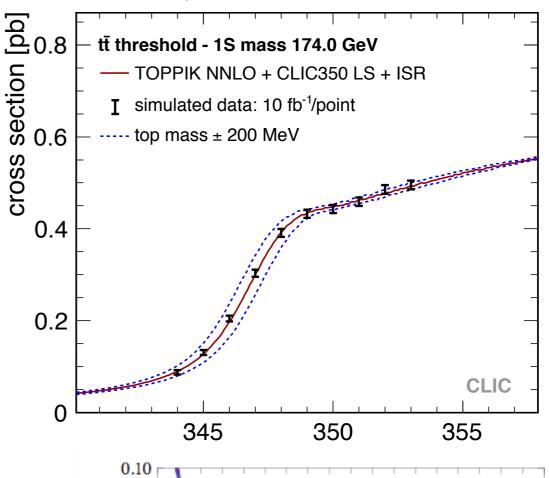

sensitivity comparison

https://arxiv.org/pdf/1907.04311.pdf

• W⁺W⁻ THRESHOLD SCAN (10⁸ W's)

 $\Delta M_W \sim O(1 \text{ MeV})$, $\Delta m_t \sim O(10 \text{ MeV})$, $\Delta m_H \sim O(10 \text{ MeV})$.

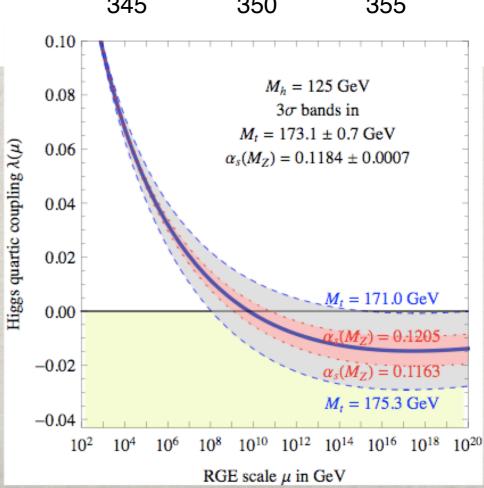



(definitive test for the SM vacuum stability)

TLEP Report: 1308.6176; EW WG Report: 1310.6708

TOP-QUARK THRESHOLD

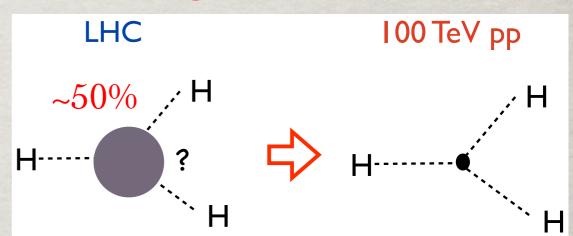
ILC: 1604.08122; CLIC: 1307.5288v3



Combining threshold scan and top-reconstruction:

 $\Delta m_t(\overline{MS}) < 50 \text{ MeV}, \quad \Delta \alpha_s < 1\%$

→ Sufficient to decide on the SM vacuum stability!

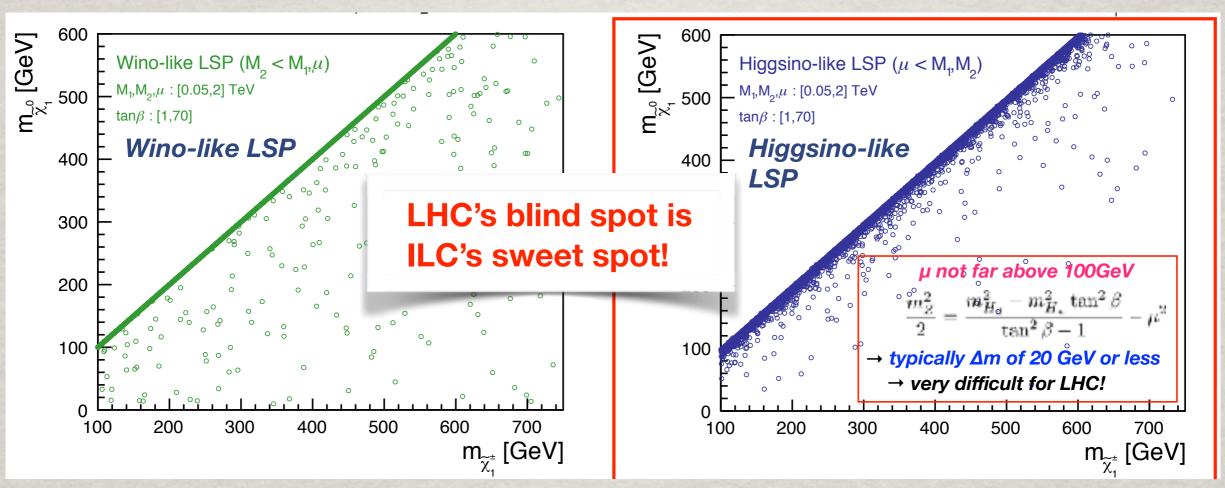

TOWARD ENERGY FRONTIER

ILC: 0.5 – 1 TeV, CLIC: 1.4 – 3 TeV

a. Higgs Self-couplings:

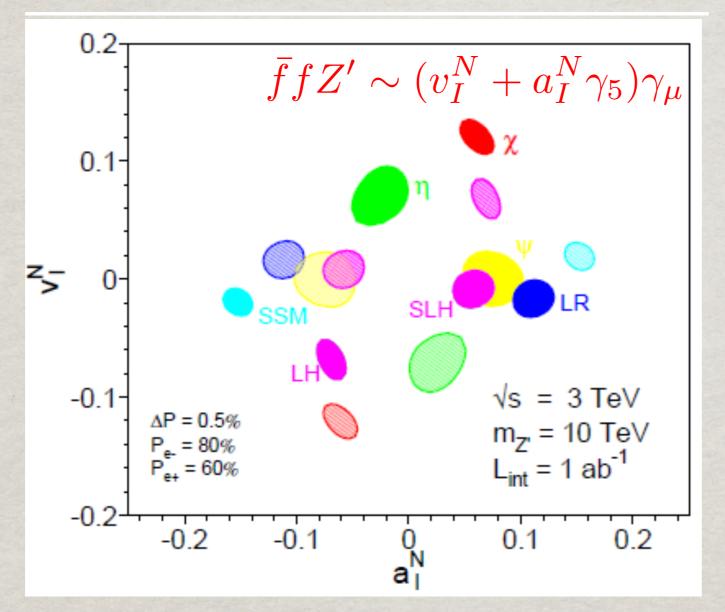
$$\mathcal{L} = -\frac{1}{2}m_H^2H^2 - \frac{g_{HHH}}{3!}H^3 - \frac{g_{HHHH}}{4!}H^4$$

$$g_{HHH} = 6 \quad v = \frac{3m_H^2}{v}, \qquad g_{HHHH} = 6 \quad = \frac{3m_H^2}{v^2}.$$


Triple coupling sensitivity:

0.5 TeV 1 TeV(2 ab⁻¹) 1.4 TeV 3 TeV **λ**_{hhh} 26% 10% 21% 10%

Test the shape of the Higgs potential better than O(1)deviations, conclusive on the fate of EW-phase transition!


b. New particle discovery:e.g. electroweakinos

Keisuke Fujii

Discovery of an X: $M_x < E_{cm}/2$ Sensitive to $M_x^* >> E_{cm}!$

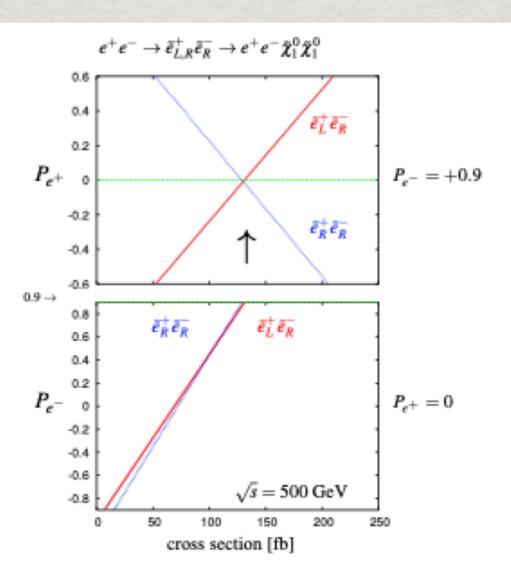
c. (virtual) Z' resolution: beam polarizations

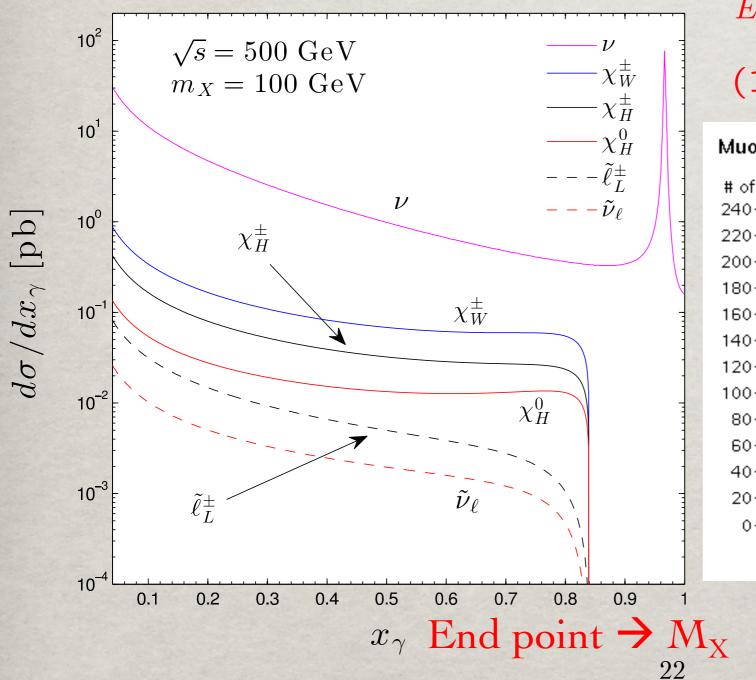
EPJ-C: arXiv:1504.01726

For a more dedicated polarization study, see: arXiv:hep-ph/0507011

Fig. 121 Top: Resolving power (95% CL) for $M_{Z'}=1$, 1.5, and 2 TeV and $\sqrt{s}=500$ GeV, $\mathcal{L}_{int}=1$ ab $^{-1}$, $|P_{e^-}|=80\%$, $|P_{e^+}|=60\%$, for leptonic couplings based on the leptonic observables σ , A_{LR} , A_{FB} . The couplings correspond to the E_6 χ , LR, LH, and KK models. From Ref. [905]. Bottom: Expected resolution at CLIC with $\sqrt{s}=3$ TeV and $\mathcal{L}=1$ ab $^{-1}$ on the "normalised" leptonic couplings of a 10 TeV Z' in various models, assuming lepton universality. The mass of the Z' is assumed to be unknown. The couplings correspond to the E_6 χ , η , and ψ , the SSM, LR, LH and SLH models. The couplings can only

Beam polarizations help for chirally coupled particles:




Fig. 5 Polarized cross sections versus P_{e^-} (bottom panel) and P_{e^+} (top panel) for $e^+e^- \rightarrow \tilde{e}\tilde{e}$ -production with direct decays in $\tilde{\chi}_1^0e$ in a scenario where the non-coloured spectrum is similar to a SPS1a-modified scenario but with $m_{\tilde{e}_L}=200$ GeV, $m_{\tilde{e}_R}=195$ GeV. The associated chiral quantum numbers of the scalar SUSY partners $\tilde{e}_{L,R}$ can be tested via polarized e^\pm -beams.

EPJ-C: arXiv:1504.01726

d. DM searches & mass determination:

$$e^+e^- \rightarrow X X \gamma$$

$$E_{\gamma} = (s - M_{xx}^2)/2\sqrt{s}$$

TH et al. arXiv:1503.08538

 $e^+e^- \rightarrow \tilde{\mu}_R^+ \; \tilde{\mu}_R^$ with two – body decays : $\tilde{\mu}_{R}^{+} \rightarrow \mu^{+} \tilde{\chi}_{0}$ $E_{\mu}^{0} = \frac{M_{\tilde{\mu}_{R}}^{2} - m_{\chi}^{2}}{2M_{\tilde{\mu}_{R}}}$ $(1-\beta)\gamma E_{\mu}^{0} \le E_{\mu}^{lab} \le (1+\beta)\gamma E_{\mu}^{0}$ Muon Energy from Right Handed SMuons at 80% Left (L=50fb^{-1}) # of Events Input 240 Reconstructed 220 200 180 160 140 120 100

End points → 2 Masses

Muon Energy (GeV)

hep-ex/0106056

70

\sqrt{s}/GeV :	92,160	240	350	500	1000	3000	threshold scans required
Higgs							
m_H	_	x	x	x	x	x	x
Γ_{tot}	_	-	x	x			
$g_{c,b}$	_	x	x	x		x	
g _{tt} H	_	-	-	x	x		
ghhh grisv	_	-	-	x	X	X	
$m_{H,A}^{SUSY}$	-	-	-	X	X	X	х
Тор							
m_t^{th}	-	-	x				x
m_t^{cont}	-	-	-	x	(x)	(x)	
A_{FB}^{i}	_	-	x	x			
$g_{Z,\gamma}$	_	-	-	x			
8FCNC	-	-	-	X	x	(?)	
Electroweak Precision Observa	ibles						
$\sin^2 \theta_{\rm eff}(Z\text{-pole})$	x					(x)	
m_W^{th}	x						x
m_W^{th} m_W^{cont}		x	x	x	(x)	(x)	
$\Gamma_{\!Z}^{''}$	x						x
A_{LR}	x						
A_{FB}	x						
SUSY							
indirect search	x	x	x				
direct search	-	-	x	x	x	x	x
light higgsinos	-	-	x	x			x
parameter determination	_	-	x	x	x		x
quantum numbers	_	-	x	x	x		x
extrapolations	-	_	_	X	x	x	X
v mixing							
θ_{23}^2	_	_	x	x			
Dark Matter							
effective-field-theory	-	-	-	x	x	x	
non-relativistic	_	_	x	x	x	x	
Extra gauge bosons							
indirect search mz'	x	-	_	x	x	x	
v_f', a_f'	-	-	-	x	x	(x)	
$m_{W'}$	x	-	-	x	x	x	
direct search	_	-	-	-	-	x	x

Table 1 Physics topics where the e^+e^- -Linear Collider provides substantial results at the different energy stages that are complementary to the LHC. The examples are described in the following chapters as well as in [7-9] 11-13, 23, 24, 26, 27, 48, 49].